Big Data and Reproductive Health in India: A Case Study of the Mother and Child Tracking System
In this case study undertaken as part of the Big Data for Development (BD4D) network, Ambika Tandon evaluates the Mother and Child Tracking System (MCTS) as data-driven initiative in reproductive health at the national level in India. The study also assesses the potential of MCTS to contribute towards the big data landscape on reproductive health in the country, as the Indian state’s imagination of health informatics moves towards big data.
Case study: Download (PDF)
Introduction
The reproductive health information ecosystem in India comprises of a range of different databases across state and national levels. These collect data through a combination of manual and digital tools. Two national-level databases have been launched by the Ministry of Health and Family Welfare - the Health Management Information System (HMIS) in 2008, and the MCTS in 2009. 4 The MCTS focuses on collecting data on maternal and child health. It was instituted due to reported gaps in the HMIS, which records monthly data across health programmes including reproductive health. There are several other state-level initiatives on reproductive health data that have either been subsumed into, or run in parallel with, the MCTS.
With this case study, we aim to evaluate the MCTS as data-driven initiative in reproductive health at the national level. It will also assess its potential to contribute towards the big data landscape on reproductive health in the country, as the Indian state’s imagination of health informatics moves towards big data. The methodology for the case study involved a desk-based review of existing literature on the use of health information systems globally, as well as analysis of government reports, journal articles, media coverage, policy documents, and other material on the MCTS.
The first section of this report details the theoretical framing of the case study, drawing on the feminist critique of reproductive data systems. The second section maps the current landscape of reproductive health data produced by the state in India, with a focus on data flows, and barriers to data collection and analysis at the local and national level. The case of abortion data is used to further the argument of flawed data collection systems at the national level. Section three briefly discusses the state’s imagination of reproductive health policy and the role of data systems through a discussion on the National Health Policy, 2017 and the National Health Stack, 2018. Finally, we make some policy recommendations and identify directions for future research, taking into account the ongoing shift towards big data globally to democratise reproductive healthcare.