
Securing Our
Dependence on Code
Reuse in Software
FEBRUARY 2023

AUTHOR:

Divyank Katira

REVIEW & EDITING:

Isha Suri

CONCEPTUALISATION:

Divyank Katira and Gurshabad Grover

LAYOUT DESIGN:

Indumathi Manohar

This work is funded by the 2020 Digital Infrastructure Fund,

by the Ford Foundation, Alfred P. Sloan Foundation, Open So-

ciety Foundations, Omidyar Network and Mozilla Foundation

in collaboration with the Open Collective Foundation.

This work is licensed under a Creative Commons Attribution

4.0 International License.

2023, Centre for Internet and Society, India

https://digitalinfrastructure.fund/
https://www.fordfoundation.org/
https://sloan.org/
https://www.opensocietyfoundations.org/
https://www.opensocietyfoundations.org/
https://omidyar.com/
https://foundation.mozilla.org/en/
https://opencollective.com/foundation
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://cis-india.org/
http://cis-india.org

Contents

Introduction			 4
Methodology				 8
How is software developed?			 10
Securing code reuse: the status quo		 13
Securing the coding process			 15
Securely loading OSS code			 20
Securing storage processes			 24
Securing build & deployment processes	 26
Conclusion					 28
Endnotes					 29

4

Introduction
01

5

What is this report
and who is it for?

Dividing and breaking up a software project into smaller modules with functional-

ity that can be reused to build other software is an increasingly common practice

in software development today. Much of this reuse happens in the form of open-

source software (OSS) packages, i.e. software whose source code is openly avail-

able on the internet with a permissive licence which allows for its reuse and mod-

ification. A study that analysed the composition of over 2400 commercial software

applications from seventeen industries found that, on average, 78% of the code

used to build them was open-source software1 – indicating that code reuse is not

merely supplemental, but foundational to software development processes today.

Relying on domain experts to build and maintain the functionality that is ancillary

to a software application’s primary purpose saves effort and allows application de-

velopers to focus on their own work domains. For instance, a developer building a

video conferencing application – such as Zoom – may reuse an open-source library

called ffmpeg to encode and decode video streams, or another open-source compo-

nent, OpenSSL, to encrypt and decrypt the encoded streams as they are transmit-

ted over the internet, rather than reimplementing this functionality from scratch.

Despite the well-known practical benefits of code reuse and its prevalence in all of

the digital products and services our society relies on, several security incidents

in widely used OSS projects have shown that such projects are often underfunded

and under-maintained. The ‘Heartbleed’ vulnerability most clearly illustrates this.

In 2014, a security vulnerability in the OpenSSL software library – which is widely

used to encrypt web traffic – affected about one-fifth of the servers on the internet.2

Malicious actors could have exploited this vulnerability to decrypt all of the data

that these servers handled and even impersonated them.

In this report, we examine our infrastructural dependence on reuse of OSS compo-

nents and develop an understanding of the security risks posed by the widespread

reuse of code that is developed and maintained by untrusted individuals and

organisations that have no obligation to provide these services or any subsequent

support.

We present an analysis of common security issues in OSS packages, with a focus

on the unique security issues that arise in the tooling and processes used to store,

distribute and operate reused code. Finally, we survey solutions and frameworks

which seek to address some of these issues on a systemic level.

This report is primarily aimed at regulators, technical decision-makers and organ-

isations invested in furthering research in this area. It can also serve as a starting

point for software developers who want to learn about the common security pitfalls

of using OSS components and how they can avoid them.

https://ffmpeg.org/
https://www.openssl.org/

6

Why we need to
secure code reuse

Software security refers to preventing any activity that adversely affects a software

system’s ability to maintain confidentiality (refers to keeping data private), integrity

(preventing tampering), or availability (keeping services running).

The security of open-source software is important, in particular, because of the

wide-ranging downstream effects of code reuse. A security issue in a single com-

ponent can compromise the security of its manifold users, essentially reducing the

security of several entities to the security of an individual entity that they all rely

on. The concept of transitive dependencies is also important to understand the

expansive nature of code reuse. Software projects not only rely on the packages

that are directly imported into the project, but also on all of the packages imported

by each of these dependencies – and so on and so forth. This creates a large and

complex ‘dependency graph’ with tens, or even hundreds, of reused packages, as

illustrated in Figure 1.

The practice of code reuse isn’t new – free and open-source software movements

have roots in the 80s and 90s. But over the past decade, there has been a massive

increase in the extent of code reuse, as well as a shift in the types of software that

are reused. In an essay titled ‘Our Software Dependency Problem’,3 Russ Cox – de-

veloper of the package manager for Google’s Go programming language, attributes

these changes to the integration of package managers in modern programming

languages.

It is argued that the ease with which these tools allow developers to publish

and reuse software packages has changed the extent of code reuse from a few

high-quality, well-reputed packages to a large number of dependencies that even

cover trivial tasks requiring only a dozen or so lines of code. This is evidenced by

almost 2 million packages being available in the npm package manager for the

JavaScript programming language.

Other package managers for popular languages such as Java, PHP, Python, and

.NET each offer over 300,000 packages.4 Russ Cox further opines that “the situation

[of software reuse] goes mostly unexamined” and that today “we are trusting more

code with less justification for doing so”.

7

Figure 1: A dependency graph showing the names and version numbers of all di-

rect and transitive dependencies for ‘express’, a popular javascript framework used

to build web applications. Source: Open Source Insights

express 4.18.1

https://deps.dev/npm/express/4.18.1/dependencies/graph

8

Methodology

02

We analysed security issues in OSS components from an
openly available dataset covering nine package managers
across nine programming languages, with a focus on how
OSS is stored, managed, built and deployed.

Subsequently, we surveyed solutions and frameworks
which seek to collectively secure code reuse in the broader
OSS ecosystem.

9

To understand the most common types of security issues in OSS software, we man-

ually analysed nearly 6500 vulnerabilities in the Snyk Open Source Vulnerability

Database5 between January 2017 and September 2021.

This dataset contained descriptions of vulnerabilities in open-source software cov-

ering the following package managers and programming languages:

cocoapods (for the Objective C programming language),

Composer (PHP),

Go (Go),

hex (Erlang),

Maven (Java),

npm (JavaScript),

NuGet (.NET),

pip (python),

and RubyGems (Ruby).

The vulnerabilities were annotated to distinguish which part of the software supply

chain they affected, i.e. the development, transfer, storage and build processes.

These were aggregated by vulnerability type to compile the types of issues that

affect code reuse. We also surveyed academic literature, news reports, incident

reports, mailing list archives, issue trackers, and technical write-ups by OSS devel-

opers and security researchers describing their work to compile a list of ways in

which code reuse can be targeted.

In our survey of solutions in the space, we heavily reference the work done by

industry bodies, coalitions and non-profits such as the Open-Source Security Foun-

dation (OpenSSF), the Core Infrastructure Initiative, the Linux Foundation’s in-toto

project, and the Internet Security Research Group (ISRG).

Limitations While we have included metrics, such as the number of vulnerabilities of a particu-

lar kind and their severity scores where relevant, care must be taken while ranking

and prioritising issues based on them. Software security is notoriously hard to

measure, and the issues visible in our dataset only represent a subset of all vul-

nerabilities i.e. the ones that have been discovered. Security is also highly contex-

tual, a seemingly harmless low severity vulnerability could have a higher impact

(and vice versa) depending on how a particular software uses the vulnerable code.

For instance, a security issue in a cryptographic library may appear critical, but

it will not have much of an impact if that library is being used to shuffle a deck of

cards in a single-player game of solitaire.6

10

How is software
developed?

03

To understand how code reuse practices are vulnerable
to security threats, we need to first understand relevant
parts of the software development process. As there is no
standard way of developing software, we describe the most
common workflow.

11

Coding: Once the requirements and design of a piece of software are laid out, a software

developer will start coding it. As they go about their work, they will likely encoun-

ter open-source packages which implement some of the functionality that they

need, and may choose to reuse this code. They then load the OSS code onto their

computer and integrate it with the functionality they were working on. When coding

is complete, they will ‘compile’ or ‘build’ the software.

Compile and
test:

Software written in most programming languages undergoes a ‘compilation’ or

‘build’ stage in which source code is converted into instructions that computers can

understand and execute. Even programs written in interpreted languages, which

are not compiled, but directly translated into instructions as the software executes,

undergo some form of bundling or packaging process before they are consumed.

This process, of converting code into the format that it will finally be consumed

in, is known as the build process. Any tests on the software that were developed

during the coding process will be run once the build is complete.

Review: After the software is built and satisfactorily tested, the developer submits it for

review. The review includes both manual and automated checks on the code. In

the manual code review, other developers on the team go through the changes

to the code and give any suggestions. The automated checks (commonly known

as Continuous Integration or CI) load any OSS dependencies, build the software

independently, and conduct tests on the code to ensure it integrates correctly with

the rest of the codebase.

Storage: After review, the code is submitted to a storage repository. The storage repository

typically runs some version control software, such as git or Subversion, which han-

dles storage of source code, tracks different versions, and manages any conflicts in

contributions from multiple developers.

In practice, individual organisations use variations of this
workflow as they see fit – they may conduct some of the
automated processes described below manually, or may
omit steps, such as reviews, entirely.

12

Deployment: Finally, when software is ready to be released, a build server i.e. an independent

computer tasked with building the software, will load its OSS dependencies, build

the software, test it again, and deploy it for consumption. If the software being

developed is also open-source, it may be reused by another developer, and this

process repeats itself.

A diagrammatic representation of the software development process is shown in

Figure 2.

Figure 2: How software is developed

OSS Packages
are loaded

Software is
developed

Code could be
reused

Storage
Repository

Manual Code
Review

Automated
Tests & Checks

Build, Package,
Deploy

Developer

13

Securing code reuse:
the status quo
In this section, we describe how organisations go about
securing code reuse today. Current approaches to securing
code reuse are limited in that they are geared towards
best practices that individual organisations follow, such
as auditing code for security issues and keeping tabs on
their dependency graph. They are also reactive in nature;
issues are mitigated and remediated by involved entities
once they come to light, with little to no focus on proactive,
collective measures to secure this shared infrastructure.

04

14

Code audits: Code audits are a standard practice for organisations that develop software once

they reach a certain size. It entails a periodic manual review of all code (excluding

OSS code) and configurations by security experts as well as automated checks to

catch common security issues.

However, for open-source projects, many of which are run by volunteers, the cost

of manual code reviews can be prohibitive. Additionally, only the largest organ-

isations have the resources to review OSS libraries they depend on along with

any subsequent updates. This leaves the majority of OSS usage unreviewed and

vulnerable.

There is an increasing focus on maintaining an inventory of dependencies, tracking

vulnerabilities in them, and installing timely updates. A 2021 Executive Order by

the US government requires vendors supplying software to the federal govern-

ment to include a “Software Bill of Materials”. This is essentially a list of compo-

nents used to build software and can be used to keep track of vulnerabilities in

third-party components.7 This regulatory acknowledgement of code reuse security

issues has spawned a number of tools and standards to help organisations main-

tain and exchange lists of their software dependencies.

Security vendors have also developed tools to help organisations check if any of

their dependencies have known vulnerabilities by cross-checking vulnerability

databases. These tools are typically paid and not accessible to all organisations.

Vetting and
tracking OSS
dependencies:

Intervention
from package
managers
and code
repositories:

Vulnerabilities have been mitigated in the past through manual intervention by

package managers (like npm, PyPI) and code storage repositories (GitHub, Git-

lab). In some cases, package managers and storage repositories have stepped in

to restore packages that have been tampered with to a previous working state.

Package managers have also used their administrative power to remove malicious

packages from their listings. For instance, when the author of the popular ‘colors’

and ‘faker’ packages intentionally sabotaged their code, npm reverted the packages

to previous stable versions to prevent people from accidentally using them and

Github suspended their developer account.

While these individual and reactive approaches to secure code reuse deployed

today are an important first step, there is a need to focus on more proactive and

collective efforts. In sections 5 to 8 below, we describe the unique security issues

that arise in the tooling and processes used to store, distribute and operate code

reuse, and survey efforts that approach these problems at an infrastructural level

to collectively address them.

15

Securing the
coding process
Most security vulnerabilities are introduced during the
coding process. We describe the most common types of
vulnerabilities we encountered during our examination of
the Snyk vulnerability database, and other writeups and
reports in this section.

05

16

Human error: Computer programming is prone to human error. A large majority of security

vulnerabilities that we encountered during our analysis were common program-

ming mistakes which allowed malicious actors to compromise the security of the

software in question. The most common ones are explained in Table 1.

Memory safety
issues:

Programming languages like C and C++ require programmers to manually manage

a program’s memory. This process is highly error-prone, and lapses can be exploit-

ed by attackers to inject and execute their own code in a program’s memory, essen-

tially allowing them to take over the entire program or even the device. Memory

safety issues were underrepresented in our dataset as only one (Objective C) of the

nine programming languages covered is vulnerable to them. However, large por-

tions of our digital infrastructure, including the most popular operating systems,

web browsers, databases, and encryption and networking libraries, are written in

memory unsafe programming languages such as C and C++. Year after year, be-

tween 60 and 90% of all vulnerabilities in critical software such as Android, MacOS,

iOS, the Linux kernel, Firefox and Chrome, have been memory safety issues.8

Typosquatting &
masquerading:

Typosquatting is a way to introduce malicious dependencies into software by creat-

ing packages whose names correspond to common typographical mistakes in pop-

ularly used packages. Such attacks rely on developers accidentally referencing the

malicious package, which typically includes all of the functionality of the original

library along with some malicious embedded code that is triggered under certain

conditions. For instance, a malicious Python package named “Collored” mimics the

popular “colored” library, which is used to add colours to terminal windows.9

A variation of this attack is known as masquerading, wherein a malicious library

mimics the functionality of a well-known library and uses a similar-sounding name

which developers may confuse for the original one. For example, ‘tools-for-discord’

is a malicious package that masquerades as a legitimate one.10

This type of attack is very common – we encountered 408 instances of typosquat-

ting in our dataset, and several more in news reports. Mitigating such attacks

requires manual intervention from the package managers to remove the offending

packages as and when they are reported to them.

17

VULNERABILITY TYPE OCCURRENCES DESCRIPTION

Cross-site Scripting (XSS) 1048
This vulnerability allows an attacker to inject malicious

code into a victim’s web browser when a legitimate

website is loaded and can be used to steal credentials or

perform actions on a victim’s behalf.

Malicious Package 625 This refers to third-party software packages which have

been injected with malicious code. These are discussed

in detail in the sections below.

Denial of Service (DoS) 512
Denial of Service vulnerabilities affect the availability of

data or services that the software has been tasked with.

Information Exposure 344
Refers to vulnerabilities that accidentally reveal private

information.

Cross-site Request Forgery

(CSRF)
284

Allows attackers to trick web users into performing

unwanted actions on websites.

Directory Traversal 264
Directory traversal allows attackers to access files that

they are not authorised to view.

Remote Code Execution (RCE) 252
Gives attackers the ability to remotely take over a com-

puter and execute commands on it.

Regular Expression Denial of

Service (ReDoS)
247

Attackers can make a computer hang by supplying a

specifically crafted input to software that contains this

vulnerability.

Prototype Pollution 232

Allows attackers to tamper with a program’s internal

representation of objects. It can be used to gain access

to data and take over a program’s flow.

Table 1: Ten most common vulnerabilities in our dataset.

18

Emerging solutions

01

02

03

We discuss ways to collectively minimise security issues stem-

ming from coding mistakes below:

Using Memory Safe Languages

As discussed, memory management issues are the root cause of several high

severity issues in our digital infrastructure. Memory unsafe programming languag-

es remain in heavy use for systems programming as they are highly performant

and offer a high degree of control. There are also historical reasons – they inte-

grate easily with existing operating systems and system libraries which were also

written in the same languages. There are efforts underway to replace the use of

memory unsafe languages with modern programming languages, such as Rust,

which are memory safe and offer comparable performance. These languages en-

tirely eliminate the possibility of memory safety issues by either managing mem-

ory automatically or conducting checks at compile time to ensure secure memory

use. The Prossimo project, led by the Internet Security Research Group (ISRG),

is working on rewriting some of our most critical software dependencies, such

as encryption libraries and parts of the Linux operating system, in memory safe

languages. However, this is a massive effort – decades of internet infrastructure

building needs to be redone before we are able to minimise memory safety issues

to satisfactory levels.

Collective Code Auditing

This approach suggests that instead of individual organisations conducting secu-

rity audits on their software dependencies independently, they can pool together

resources to conduct public audits of popular shared libraries. The Open Source

Security Foundation’s Alpha-Omega project is one such effort. It aims to select 200

projects per year and conduct security assessments on them.11

Open Bug Bounties

Bug bounties are a way of crowdsourcing security audits. Security researchers and

ethical hackers are encouraged to find issues in software and are rewarded with a

monetary ‘bug bounty’ for responsibly disclosing it to the project maintainers. Open

bug bounty programs are a way of funding such activity for open-source proj-

ects. The Internet Bug Bounty program, funded by a few tech companies, rewards

researchers with a bug bounty for reporting issues to open-source projects and

offers a portion of it to the maintainers of the project in which the vulnerability is

discovered. The program covers 17 projects and has resolved over 700 security re-

ports at the time of writing. The European Commission’s Open Source Programme

Office also runs one such program.12

https://www.memorysafety.org/
https://www.hackerone.com/internet-bug-bounty

19

Fuzzing OSS projects

Fuzz testing is an automated method of discovering vulnerabilities in software. In

this method, computer programs are supplied with a large number of inputs and

monitored for any abnormal behaviour or crashes. Google’s OSS-Fuzz project,

which it runs in collaboration with the Core Infrastructure Initiative and OpenSSF,

conducts fuzz testing on over 500 open-source projects and has discovered over

8000 security issues.

Large-scale package analysis

The OpenSSF’s Package Analysis project is developing tools to automatically scan

package repositories and identify malicious variations in the names and code of the

packages. So far, it has discovered over 200 malicious packages in the npm and

PyPI package managers.

Identifying a set of ‘critical’ OSS components

Given the limited resources available for securing open-source projects, there is

a need to identify a set of dependencies that are most critical for security to focus

efforts on. There are a number of factors to consider while deciding on this:

○	 Usage: Security issues in OSS projects that are more popular can have a

greater impact.

○	 Functionality: Not all dependencies are equal when considering security. A

vulnerability in a library that handles network connectivity for software appli-

cations will have a much greater security impact than one that helps convert

units.

○	 Maintenance status: A project that is already well maintained may not require

additional resources.

The Civil Infrastructure Platform project seeks to identify a core set of building

blocks which can be used for civil infrastructure projects. OpenSSF’s Alpha-Omega

project is working to select OSS projects that are critical for security and plans to

collaborate with maintainers to help secure them. Initiatives like the Digital Public

Goods registry can also help prioritisation efforts.

04

05

06

https://openssf.org/blog/2022/04/28/introducing-package-analysis-scanning-open-source-packages-for-malicious-behavior/
https://www.cip-project.org/
https://openssf.org/community/alpha-omega/
https://digitalpublicgoods.net/
https://digitalpublicgoods.net/

20

06
Securely loading
OSS code
Even though most OSS maintainers are honest in practice,
OSS code is essentially under the control of untrusted
individuals or organisations who are under no obligation
to develop or maintain it. Maintainers can change the
expected functionality of a package, insert malicious code,
or withdraw the code entirely. In this section, we discuss
vulnerabilities which allow attackers to supply code that is
different from the expected source code.

21

OSS libraries are loaded at multiple points during the software development work-

flow – on the developer’s computer during development, and on the build server

during the testing and build stages. This compounds the harm that any intrusion

into the OSS code can cause, as it can be used to compromise multiple parts of the

software development workflow.

OSS code may be loaded from the internet or from a repository of OSS libraries

maintained within the organisation. The latter configuration is more secure, as it

reduces the possibility of interference by third parties.

The common types of vulnerabilities associated with loading OSS code are:

Dependency
confusion

Unlike typosquatting and masquerading attacks, which rely on tricking developers

into accidentally referencing malicious packages, dependency confusion attacks

are targeted towards tooling. In such attacks, malicious packages use names that

are identical to private packages that organisations may use. The malicious pack-

ages declare a high version number, confusing package management tools, which

default to using the newer versioned malicious package over the older version of

an identically named private package that the developer intended to use.

This novel attack was reported in early 2021 by a whitehat hacker who used it to

gain access to the networks of 35 large companies.13 Its use has since been report-

ed in real-world attacks14 and we also found four instances in our dataset.

Mitigating such attacks also requires manual intervention from the package man-

agers who remove the offending packages as and when they are reported to them.

Code sabotage
and withdrawal

An effect of using open-source packages that are under the control of a third party

is that their authors can rename, withdraw, relicense, and even sabotage the code.

As a result, we have seen many vulnerabilities that exploit this level of control to

inject malicious code into software.

Rogue packages
and protestware

The authors of OSS libraries can intentionally insert malicious code or otherwise

change the expected functionality to disrupt software that relies on it. For in-

stance, in early 2022, the author of the ‘colors’ and ‘faker’ javascript packages, with

thousands of users each, introduced a change which displayed gibberish on users’

screens and rendered the functionality of the packages unusable. The author had

indicated that they no longer wanted their free work to support corporations.15

There were also instances of ‘protestware’ during the Russian invasion of Ukraine

in 2022. Experts compiled a list of 21 packages which showed users messages

about the war, and some even tried to remove files from users’ computers if they

were based in Russia or Belarus.16,17

22

Withdrawal and
rename

Authors may also rename or withdraw packages, which can cause unwanted effects

to downstream consumers. In 2016, the author of a popular library called ‘left-pad’

unpublished the package, breaking the projects of people who directly and indirect-

ly relied on it. An author changing their account username to lower-case on a code

storage repository has caused similar issues.18 Once a package is withdrawn from

a particular repository, its name can also be occupied by a malicious package that

takes its place.19 We encountered 33 instances of such ‘use-after-free’20 malicious

packages in our dataset.

Instances of code sabotage and withdrawal have been mitigated in the past by

intervention from code storage repositories and package managers, who have used

their administrative power to restore the code to a previous working version.

Tampering
dependencies in
transit

Another point of potential compromise of an OSS library is while it is being trans-

mitted over the internet. We encountered 16 vulnerabilities where OSS packages

were downloaded over the internet without using encryption, allowing network

intermediaries to tamper with the code in transit. Such an attack can only be exe-

cuted by powerful actors who can target and intercept network traffic.

Emerging Solutions

01 Ensuring the integrity and availability of code

Instances of code withdrawal, sabotage and dependency confusion attacks have

demonstrated the need for tooling that ensures the integrity and availability of

code. The purpose of integrity checks is to ensure that OSS packages being loaded

match the expected source code, and have not been tampered with in any way.

Availability entails ensuring that code is available for use when it is needed, and

access to it cannot be removed or impeded by any third party.

The sigstore project, affiliated with OpenSSF, is developing standards and infra-

structure to digitally sign and verify open-source software. It not only aims to ver-

ify the integrity of code but also includes other attestations about the code such as

information authenticating its developer and version. The Update Framework, from

the Cloud Native Computing Foundation, also seeks to provide similar functionality.

https://www.sigstore.dev/
https://theupdateframework.io/overview/

23

However, there is a need to make such features available in existing tooling and

enabled by default. Google’s Go programming language is a success story in this

area. It has implemented integrity checks into its built-in package management

system, Go Modules. It maintains availability of packages by providing a proxy ser-

vice that stores and serves packages even if they are withdrawn or removed from

the source control system. It also automatically verifies the integrity of downloaded

packages by calculating ‘cryptographic hashes’ – which are essentially fingerprints

of packages – and checking them against a tamper-evident log of hashes, ensur-

ing that no third party, including the operator of this service’s infrastructure, can

change the contents of the code once it is installed by a developer.21

Package version pinning

Version pinning, i.e. specifying up-front the exact version of the OSS package to be

used, is another improvement which can be incorporated into package manage-

ment systems to load OSS dependencies more securely. Some popular package

managers, such as npm and yarn for the javascript programming language, default

to using a versioning system which automatically updates dependencies when mi-

nor revisions are released. When the author of the ‘colors’ npm package published

a sabotaged version, several of the tens of thousands of packages that depended

on it, both directly and indirectly, included the newer version automatically and

broke.22 Version pinning ensures that updates to packages are intentional, and bad

updates are not automatically included in software.

02

24

07
Securing storage
processes
Code can also be manipulated at its point of storage.
Vulnerabilities in the tools used to store source code and
publish OSS packages can be exploited to inject malicious
code into software applications. The common types of
vulnerabilities associated with storing OSS code and
packages are discussed in this section.

25

Vulnerabilities
in storage tools
and package
managers

Most development processes use version control systems such as git and Subver-

sion to store source code, track changes to files, and coordinate contributions from

multiple developers.23 Package managers are used to modularise and share open-

source packages with others. Vulnerabilities in such tools can be used to inject ma-

licious source code into software, effectively bypassing any manual and automated

review processes performed on the code. For instance, in 2021, Github was made

aware of a vulnerability in its npm package manager that allowed malicious actors

to update any package with code of their choice.24

Credential
compromise

Another way in which attackers can tamper with OSS packages is by gaining access

to the authors’ accounts on various online code storage repositories and package

management tools. During the compromise of the popular javascript package

‘ua-parser-js’, the author’s account was hijacked and used to publish malicious

versions of the package.25 In our dataset, we encountered three malicious packages

which were published from stolen accounts.

Malicious
contributions

The collaborative nature of open-source software entails contributions from

unknown, untrusted individuals who are willing to help with a project. While most

contributors are honest and contributions are typically reviewed by maintainers of

projects, there is still a possibility of malicious code being introduced by contribu-

tors.

The javascript package ‘event-stream’, which helps developers manage streams of

data, was compromised after its maintainer handed over ownership of the package

to one of its contributors. The contributor introduced malicious code into the pack-

age to steal cryptocurrency from its users.26

Emerging solutions Stronger authentication policies

A weak password chosen by a single OSS maintainer can be used to compromise

several organisations that depend on their code. To remedy this, there is an emerg-

ing trend to mandate stronger authentication policies by using technologies like

multi-factor authentication (MFA). As of 2022, the top 500 maintainers in the npm

package manager are required to enable MFA on their accounts.27

26

08
Securing build
& deployment
processes
The testing, build, and deployment processes in the
software development workflow have been identified as
a potential point of compromise. A vulnerability in the
build server or the tools that orchestrate and execute
these processes can be exploited to inject malicious code
into software. Injecting malicious code at this stage of
the software development lifecycle can go unnoticed as
security reviews and audits typically happen before this
step. The common types of vulnerabilities that affect the
build and deployment processes are discussed in this
section.

27

Build and
deployment
infrastructure
compromise

Emerging solutions

In 2020, a supply-chain compromise on SolarWinds, which provides network mon-

itoring tools to thousands of government and corporate customers, was attributed

to a backdoor which was inserted into one of its products during the build pro-

cess.28 This was a fairly sophisticated state-linked attack with more than a thou-

sand developers working on developing the malware29 and went undetected for

months. Attacks on build and deployment infrastructure are not trivial to carry out

as this infrastructure is typically kept on a private network that is not connected to

the internet, but such intrusions can be very stealthy.

In our analysis of the vulnerability dataset, we found a total of 437 vulnerabilities

in various build and deployment tools. This includes continuous integration tools

such as Jenkins and Buildbot, automated deployment tools like Puppet, Chef and

Ansible, and tools to orchestrate larger deployments of multiple servers like Ku-

bernetes and Consul. Out of these 144 were critical and high severity issues, 244

were medium and 49 were considered low severity. 	

Compiler,
operating
system,
hardware
compromise

Further down the supply chain, attackers can exploit or insert vulnerabilities in

programming languages and their compilers, the operating systems that servers

use, or even the physical hardware. Vulnerabilities in any of these components can

be used to compromise the build and deployment processes, and insert malicious

code into software applications. While compilers and operating systems were out

of scope for our analysis, many of them are open-source software and are vulnera-

ble to the issues described in this report.

Reproducible builds

Similar to integrity checks on code which verify that code has not been tampered

with during loading, reproducible builds aim to ensure the integrity of the build

process. Reproducible builds require that the build process is deterministic, i.e. it

produces the exact same output each time it is run. If two independent systems can

run the build process and produce identical outputs, it provides some assurance

that the build process was not compromised or tampered with.

However, there are many technical challenges to developing reproducible build

processes. Firstly, all the inputs to the build, including all source code, OSS

dependencies, compilers, toolchains, etc. need to be declared up-front. Secondly,

all sources of non-determinism i.e. things that may change between subsequent

builds, need to be removed from the build process. This includes things like

timestamps, certain optimisation techniques which produce different code each

time, and code signatures present in the build.30 The Reproducible Builds project is

working towards solving these technical challenges and building software tooling

that allows for reproducible builds.

https://reproducible-builds.org/

28

09
Conclusion
The state of security of code reuse has been compared to that of the web before the

widespread adoption of the encrypted HTTPS protocol in the 2010s.31 A majority of

web traffic was unencrypted, allowing any internet intermediary to view or modify

users’ web traffic as they wished. The development of easy-to-use encryption made

freely available, reversed this trend, leading to a large majority of websites sup-

porting encryption. Our analysis of vulnerabilities in open-source software demon-

strates a similar state of neglect.

Open-source code is largely unreviewed for security issues, lacks adequate sys-

temic safeguards to prevent tampering of code, and does not present users with

the tools to verify whether the software they are consuming matches the expected

source code.

Our survey of emerging solutions indicates that while there are ways to fix many

of these issues, the solutions are not operating at a large enough scale to address

the problem. This suggests that market forces and existing data protection regula-

tions have failed to sufficiently incentivise organisations to address the problem of

securing code reuse. As both public and private sectors derive massive value from

software while reusing open-source code as their foundation, there is a need for

regulation to ensure that they contribute to maintaining this infrastructure, instead

of relying on them to do so voluntarily.

29

Endnotes

1	 Synopsys Inc . “2022 Open Source Security and Risk Analysis Report,”

synopsys.com

2	 Paul Mutton,“Half a million widely trusted websites vulnerable to Heart-

bleed bug,” news.netcraft.com

3	 Russ Cox,“Our Software Dependency Problem,” research.swtch.com

4	 Erik DeBill, “Module Counts,” modulecounts.com

5	 Synk, “Vulnerability DB,” security.snyk.io

6	 Alex Gantman, “SBOM: Good Intentions, Bad Analogies, and Ugly Out-

comes,” againsthimself.medium.com

7	 Joseph R. Biden Jr.,“Executive Order on Improving the Nation’s Cyberse-

curity,” whitehouse.gov

8	 Alex Gaynor, “What science can tell us about C and C++’s security,” alex-

gaynor.net

9	 Ax Sharma, “Careful Out There: Open Source Attacks Continue to Be on the

Uptick,” blog.sonatype.com

10	 Ravie Lakshmanan, “25 Malicious JavaScript Libraries Distributed via

Official NPM Package Repository,” thehackernews.com

11	 Bruce Schneier, “Finding Vulnerabilities in Open Source Projects,” schnei-

er.com

12	 Nikos Vaggalis, “European Union Will Pay For Finding Bugs In Open

Source Software,” i-programmer.info

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://research.swtch.com/deps
http://www.modulecounts.com/
https://security.snyk.io/vuln
https://againsthimself.medium.com/sbom-good-intentions-bad-analogies-and-ugly-outcomes-fd95b0fc4d6f
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://blog.sonatype.com/careful-out-there-open-source-attacks-continue-to-be-on-the-uptick
https://thehackernews.com/2022/02/25-malicious-javascript-libraries.html
https://www.schneier.com/blog/archives/2022/02/finding-vulnerabilities-in-open-source-projects.html
https://www.schneier.com/blog/archives/2022/02/finding-vulnerabilities-in-open-source-projects.html
https://www.i-programmer.info/news/149-security/15210-european-union-will-pay-for-finding-bugs-in-open-source-software.html

30

13	 Alex Birsan, “Dependency Confusion: How I Hacked Into Apple, Microsoft

and Dozens of Other Companies,” medium.com

14	 Ravie Lakshmanan, “Over 200 Malicious NPM Packages Caught Targeting

Azure Developers,” thehackernews.com

15	 Owen Williams, “Open source developers, who work for free, are discover-

ing they have power,” techcrunch.com

16	 Bruce Schneier, “Developer Sabotages Open-Source Software Package,”

schneier.com

17	 Brian Krebs, “Pro-Ukraine ‘Protestware’ Pushes Antiwar Ads, Geo-Target-

ed Malware,” krebsonsecurity.com

18	 Andrew McAndre “Rename back to Sirupsen/logrus,” github.com

19	 Thomas Claburn, “You can resurrect any deleted GitHub account name.

And this is why we have trust issues,” theregister.com

20	 Term originally used by Ohm, Marc, et al. “Backstabber’s knife collection:

A review of open source software supply chain attacks.”

21	 Filippo Valsorda, “How Go Mitigates Supply Chain Attacks,” go.dev

22	 Russ Cox, “What NPM Should Do Today To Stop A New Colors Attack To-

morrow,” research.swtch.com

23	 Wikpedia, “Git,” en.wikipedia.org

24	 Mike Hanley, “GitHub’s commitment to npm ecosystem security,” github.

blog

25	 Lawrence Abrams, “Popular NPM library hijacked to install pass-

word-stealers, miners,” bleepingcomputer.com

26	 “Details about the event-stream incident,” blog.npmjs.org

27	 “Top-500 npm package maintainers now require 2FA,” github.blog

28	 CrowdStrike Intelligence Team, “SUNSPOT: An Implant in the Build Pro-

cess,” crowdstrike.com

29	 Simon Sharwood, “Microsoft says it found 1,000-plus developers’ finger-

prints on the SolarWinds attack,” theregister.com

30	 SLSA, “Frequently Asked Questions,” slsa.dev

31	 The Kubelist Podcast, “Ep. #20, Sigstore with Dan Lorenc of Google,”

heavybit.com

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://thehackernews.com/2022/03/over-200-malicious-npm-packages-caught.html
https://techcrunch.com/2022/01/18/open-source-developers-who-work-for-free-are-discovering-they-have-power/
https://www.schneier.com/blog/archives/2022/03/developer-sabotages-open-source-software-package.html
https://krebsonsecurity.com/2022/03/pro-ukraine-protestware-pushes-antiwar-ads-geo-targeted-malware/
https://github.com/sirupsen/logrus/issues/570
https://www.theregister.com/2018/02/10/github_account_name_reuse/
https://go.dev/blog/supply-chain
https://research.swtch.com/npm-colors
https://en.wikipedia.org/wiki/Git
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/
https://www.bleepingcomputer.com/news/security/popular-npm-library-hijacked-to-install-password-stealers-miners/
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://github.blog/changelog/2022-05-31-top-500-npm-package-maintainers-now-require-2fa/
https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/
https://www.theregister.com/2021/02/15/solarwinds_microsoft_fireeye_analysis/
https://slsa.dev/spec/faq
https://www.heavybit.com/library/podcasts/the-kubelist-podcast/ep-20-sigstore-with-dan-lorenc-of-google/

31

http://cis-india.org

	_ritcx3vmlcz9
	_qxaau3yrhxg3
	_39938xa8yt5e
	_hfbgdhz9cj0g
	_hlu77tkgicra
	_us78ocxno1gy
	_xzmejvvvktn
	_9pxq5fvnsjrm
	Introduction
	Methodology
	How is software developed?
	Securing code reuse: the status quo
	Securing the coding process
	Securely loading OSS code
	Securing storage processes
	Securing build & deployment processes
	Conclusion
	Endnotes

