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Flaws in the UIDAI Process

Hans VERGHESE Mathews

The accuracy of biometric identification depends on the 

chance of a false positive: the probability that the 

identifiers of two persons will match. Individuals whose 

identifiers match might be termed duplicands. When 

very many people are to be identified success can be 

measured by the  (low) proportion of duplicands. The 

Government of India is engaged upon biometrically 

identifying the entire population of India. An experiment 

performed at an early stage of the programme has 

allowed us to estimate the chance of a false positive: and 

from that to estimate the proportion of duplicands. For 

the current population of 1.2 billion the expected 

proportion of duplicands is 1/121, a ratio which is 

far too high.

A legal challenge is being mounted in the Supreme Court, 
currently, to the programme of biometric identifi cation
 that the Unique Identifi cation Authority of India 

(UIDAI) is engaged upon: an identifi cation preliminary and 
requisite to providing citizens with “Aadhaar numbers” that 
can serve them as “unique identifi ers” in their transactions 
with the state. What follows will recount an assessment of 
their chances of success. We shall be using data that was avail-
able to the UIDAI and shall employ only elementary ways of 
calculation. It should be recorded immediately that an earlier 
technical paper by the author (Mathews 2013) has been of 
some use to the plaintiffs; and reference will be made to that 
in due course.

The Aadhaar numbers themselves may or may not derive, in 
some way, from the biometrics in question; the question is not 
material here. For our purposes a biometric is a numerical rep-
resentation of some organic feature: like the iris or the retina, 
for instance, or the inside of a fi nger, or the hand taken whole 
even. We shall consider them in some more detail later. The 
UIDAI is using fi ngerprints and iris images to generate a combi-
nation of biometrics for each individual. This paper bears on 
the accuracy of the composite biometric identifi er. How well 
those composites will distinguish between individuals can be 
assessed, actually, using the results of an experiment con-
ducted by the UIDAI itself in the very early stages of its opera-
tion; and our contention is that, from those results themselves, 
the UIDAI should have been able to estimate how many indi-
viduals would have their biometric identifi ers matching those of 
some other person, under the best of circumstances even, when 
any good part of population has been identifi ed. Let us term 
a  duplicand any person whose biometric identifi er matches 
that of some other person: an occurrence which can by no 
means be ruled out. In the best of circumstances no citizen 
would try to obtain more than one Aadhaar number; and 
 Table 1 lists the number of duplicands to be expected even in 
such circumstances, and conservatively expected when the 
population will almost all 
have been identifi ed.

The last column of Table 1 
lists the ratio of the second 
column to the fi rst; and the 
third row of the table shows 
that, given the current popu-
lation of India, the UIDAI 
should expect one in every 
121 persons to be a duplicand. The last row discloses that, by 
the time the population reaches 1.5 billion, they should expect 

Table 1: Duplicands Expected
Identified Duplicands Duplicands/
(in billions) Expected Identified
(1) (2) (3)

1.0 68,87,324 1/145

1.1 83,35,451 1/132

1.2 99,21,995 1/121

1.3 1,16,47,035 1/112

1.4 1,35,10,651 1/104

1.5 1,55,12,927 1/97

The author thanks Nico Temme of the  Centrum Wiskunde & Informatica  
in The Netherlands for the bounds he derived on the chance of a false 
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one person in every 97 to be a duplicand; and biometric identi-
fi ers which allow such high proportions of duplicands cannot 
be supposed, at all, to uniquely identify individuals. Given the 
result of the experiment conducted by the UIDAI, which was 
reported in [2] and which we shall presently describe, the cal-
culation of the numbers in the second column is not diffi cult: 
requires no more calculus than anyone who has studied 
 science or engineering would know. 

A biometric is a numerical representation of an organic fea-
ture we said, which we shall regard as the output of some de-
vice upon it being presented as input, an instance of the feature 
being represented. Let us take the iris as our feature now. The 
design of the device will be attuned to the particularities of the 
iris considered generically. But we shall regard the device as a 
“black box,” simply, whose interior we are not concerned with: 
except to note that the output is almost never identical when 
any particular iris is presented as input on different occasions. 
The reasons for such inconvenient disparity are not germane 
here. But the important consequence is that one must decide 
how similar two outputs must be to count as representations of 
one and the same input iris. The usual solution is to so con-
struct the numerical representations that a “distance” can be 
calculated between any pair of them—calculated in one way 
for all possible pairs of course—and to take a pair of such to 
“match” if the distance between them does not exceed a speci-
fi ed “threshold.” This matching threshold can be decided by ex-
periment only; and there is always a chance now that the nu-
merical representations of different irises may match.

The complication will extend to the composite biometric 
identifi ers we are considering. One may ask what the chance of 
a match is when the individuals are known to be different. Let 
us call individuals the “organic sources” of our biometric iden-
tifi ers; and abbreviate as SX the organic source of an identifi er 
X. The abbreviation will prove useful as we proceed. To save 
writing let us term the calculation of the distance between 
identifi ers a “comparison.” Let X ~ Y abbreviate a match of 
identifi ers upon their comparison. The occurrence of a match 
when the organic sources are different is usually termed a 
false positive; and the probability of a false positive deter-
mines the accuracy of a biometric identifi er. It is usual to re-
gard this conditional probability as invariant: to take for one 
and the same real number, lying between 0 and 1 of course, 
the probability of a match between identifi ers deriving from 
any pair of different organic sources. The features commonly 
biometrised are presumably such as to warrant the assumption.

Let ξ be the probability of a false positive for the composite 
biometric identifi er that the UIDAI is using: of which we need 
an estimate to perform the calculations that give us our table. 
Let us consider the situation when the UIDAI has biometrcially 
identifi ed some k different individuals: whose identifi ers Y1 , Y2 , 
... , Yk are stored in some database D say. It is usual to call these 
stored identifers “templates,” and to say that the organic sources 
identifi ed thus have been “enrolled;” so in Table 1, the fi rst col-
umn lists the enrolled population. When the next enrollee 
comes along there is some chance now that his or her identifi er 
will match some or other stored template: which will increase 

with the number already enrolled, of course, since a new iden-
tifi er must be compared to each stored template. So write Φ(k) 
for this probability. Let X be the biometric identifi er of the new 
enrollee: who is its organic source SX now of course. The 
sources SX, SY1 , SY2 , ... , SYk are distinct persons now: and ξ is 
uniformly the chance of a match X ~ Yi between X and any 
stored template Yi in D, and (1 − ξ) the probability that the 
match does not occur. It is usual to assume that the occurrence 
or not of X ~ Yi is independent of the like for X ~ Yj when Yi and 
Yj are different stored templates, whether or not they them-
selves match; and  we shall suppose so. The chance that X will 
match none of the k stored templates is now the product 
(1 − ξ)k of the k identical probabilities that no match will 
 occur; and as X will either match some or other among the 
stored templates, or match none at all, we have

1 − Φ(k) = (1 − ξ) k …(1)
The probability Φ(k) can be reliably estimated when k is 

large enough; and solving for ξ above would yield us an esti-
mate for the chance of a false positive. An exact such solution 
of (1) is readily specifi ed via ξ = 1 − [1 − Φ(k)]1/k of course; but 
taking k-th roots for large k is computationally intractable. 
Computable bounds for ξ in terms of Φ(k) itself are easily 
 obtained though; and we have
Φ(k) / k  ξ  − log[1 − Φ(k)] / k …(2)
To derive the bounds (2) from the relation (1) is an elemen-

tary exercise: requiring no more than those parts of the differ-
ential calculus that students of science or engineering will 
have mastered in their fi rst year, if not before.

Let n be the total number of individuals who are to be 
enrolled. We must have n  2 here, of course, and each template 
will have been compared to every other when the enrolment 
is complete: so n(n − 1)/2 comparisons will have been made, 
altogether, between the constitutents of those many distinct 
pairs of biometric identifi ers. Let M(n) be the number of 
matches one must expect upon these many comparisons. Since 
ξ is the uniform probability of a match upon any one compari-
son, we have

M(n) = ξ [n(n − 1)/2] …(3)
Now for the expected number of matches when a total of n dif-
ferent individuals have been enrolled. Table 1 does not list the 
expected number of matches, for varying totals, but the num-
ber of duplicands rather: enrolled persons whose identifi ers 
are expected to match those of some or other enrolled person. 
Let W(n) be the number of duplicands when n different per-
sons have been enrolled. Table 1 lists in its second column the 
expected numbers W(n) for the different values of n listed in 
the fi rst column. Suppose it happens that no identifi er matches 
more than one other identifi er when the comparisons are all 
done: then each match will involve a distinct pair of identifi ers 
and we get W(n) = 2M(n). But things may not fall out so nicely. 
We may have matches X ~ Y and Y ~ Z and Z ~ X between the 
identifi ers of three different organic sources SX, SY and SZ for 
instance: in which case these three matches  involve three per-
sons, only, not six. We can limit the miscounting we might do 
by doubling the number of matches given by the formula (3); 
and we shall presently see how to do so more closely. But in the 
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case at hand at any rate, with ξ as it happens to be for the com-
posite biometric identifi er being used by the UIDAI, it was dem-
onstrated in [1] that

(†) only rarely would the identifi er of a duplicand match 
more than one other identifi er.

The computations in [1] had incorporated the probability 
that indviduals would try to enrol more than once: which had 
been estimated as 0.0005 by the UIDAI in their  report. The 
 result (†) must obtain in “the best of circumstances” as well, 
then, when no one tries to enrol more than once. So doubling 
M(n) would not seriously overestimate W(n) in the case at 
hand. But to see why that is so we must return to the situation 
of the relations (1) and (2).

So suppose again that k persons have been enrolled and that 
X is the identifi er of the next enrollee. The chance that X will 
match some or other of the k stored templates is Φ(k) = 
1 − (1−ξ)k by (1); and this is the probability that X will match at 
least one of the stored templates of course. Now for any integer 
1  q  k we can ask what the chance is that X will match at 
least q of the stored templates; let Φq(k) denote this probability. 
We have Φ(k) = Φ1(k) of course: and generally we get

Φq(k) = 1 − q–1
r=0  Cr

k ξr (1 − ξ) k–r  …(4)

where Cr
k = k! / r! (k −r)! is the “binomial coeffi cient” which 

counts how many distinct subsets of size r there will be in a set 
with k elements. To obtain the equality note that ξ r (1 − ξ)k–r 

calculates the chance of matches between X and any subset of r 
templates among the k stored templates. There are Cr

k distinct 
such subsets; so the event of X ’s matching exactly r stored tem-
plates may occur in any one of Cr

k mutually exclusive ways, 
whence Cr

k ξr (1 − ξ) k–r is the probability of exactly r matches 
between X and the k stored templates; and the sum of these 
terms on the right of (4) will equal the probability 1 − Φq(k) of 
fewer than q matches then, which gives us what we need. Com-
puting with (4) will be intractable, again, when k is very large; 
and for our purposes we need workable approximations Φq(k). 
With a little effort one can show that

kξ(1 − ξ)/(1 – ξ + kξ)  Φ1(k)  kξ  …(5)

(1 − ξ)k–q ξq Cq
k  Φq(k)  q ξq Cq

k  …(6)

The upper bound in (5) requires elementary calculus, only, 
and the lower bound no more. But the specifi cation of the latter 
requires some ingenuity; and we must thank Nico Temme of 
the CWI in the Netherlands for having calculated the lower 
bound here. We should note, though, that when both ξ and kξ 
are minuscule quantities—as they would be for any feasible 
scheme of biometric identifi cation—and the ratio between the 
bounds is practically 1 in (5), then the probability Φ1(k) can be 
safely approximated with kξ simply. For q = 1 the upper 
bounds in (5) and (6) agree: but the lower bound in (5) is tight-
er. For q  2 the lower bound in (6) is less workable than the 
upper: but luckily we shall only need the upper bound. The re-
lation (6) requires only elementary calculus as well: but one 
must proceed by taking the term on the right in (4) as the value, 
for the argument ξ, of the Incomplete Beta Function with 
 parameters k and (k − q +1). The derivations and calculations 

for the relations (2) and (5) and (6) are set down in an accom-
panying technical supplement (available online along with the 
text of this paper). The Incomplete Beta Function would not be 
a familiar thing to scientists and engineers generally. But it is 
very much a useful tool to anyone assessing the accuracy of 
biometric devices, as the compilation [3] shows. One might 
well expect, then, that the UIDAI has some specialist adept at 
using the function: who would have been able to perform all 
the calculations carried out in [1] based on the results of ex-
periments that were  reported in [2].

We can now outline the calculations which give us the sec-
ond column in our table. We need an estimate of ξ to begin: 
which we could obtain from (2) if we had an estimate of the 
probability Φ1(k) for some suitably large k. We had men-
tioned two experiments conducted by the UIDAI. The fi rst of 
those was to estimate this probability, and it was performed 
when 84 million persons had been enrolled. The experiment 
is reported in [2]. It consisted of 4 million trials of the follow-
ing description: in each trial a different template is picked 
from the stored templates, and compared against the re-
mainder to see if a match occurs. Assuming that no one had 
been enrolled more than once, as [2] in fact does, the number 
of matches yields an estimate of Φ1(k) for k = 84 · 106. The 
report of the experiment in [2] records 2309 matches from 4 · 
106 trials conducted, and takes  ≡ 2309/4 · 106 as the esti-
mate we are seeking. We shall use it; and putting  for Φ1(k) 
in the relation (2) we get

/k  ξ  [− log(1 − φ)]/k = 
i=1 < 

 i/i · k

We have /k = (0.687202381) · 10−11 here. To bound the 
 series on the right note that the quantity a ≡ 4 /4k is less than 
(1/3) · 10−21, so the tail from the 4-th term on is bounded by 
a/(1 − ) < 10−21; and as [/k + 2/2k + 3/3k] comes to 
(0.687400801) · 10−11 now, we get

(0.687202381) · 10−11  ξ  (0.6874008011) · 10−11  …(7)

Let us reiterate: the UIDAI could have estimated ξ here, the 
probability of a false positive for the composite biometric iden-
tifi er they are using, by putting into the elementary relation 
(2) the result of their own experiment.

To proceed let Y1 , Y2 , ... , Yn be any listing of the biometric 
identifi ers of the n distinct enrolled persons: in the order of 
their enrolment say. The comparison of each template to  every 
other can be performed serially: for each 1  k < n we compare 
Yk + 1 to its k predecessors. Then Φ1(k) is the chance that a 
match will occur with at least one of these predecessors. As-
suming independent occurrence, as is usual, the total number 
of such templates can be estimated as

T1(n)  n–1
k–1 Φ1(k) …(8)

The sum on the right is the expected value of (n − 1) inde-
pendent Bernoulli trials, where for 1  k < n the probability of 
success on the k-th trial is Φ1(k) precisely. The k-th trial is a 
success if Yk + 1 matches at least one of its k predecessors: so the 
sum will estimate the total number T1(n) of such matching 
templates.
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Taking Φ1(k)  kξ yields T1(n)  n–1
k–1 k = ξ[n(n − 1)/2] = M(n) 

again, and this approximation seems safe enough given that 
n < 2 · 109 in Table 1, for with the bounds on ξ in (7) the ratio 
(1 − ξ)/(1 − ξ + kξ) of lower to upper bound in (5) always lies 
between (1−ξ)  1011 /(1011 − 1) and 1 now. For more precision 
one could get bounds on T1(n) by using (5) and (7) to get 
bounds on Φ1(k). The knotty calculation that would involve 
was carried out in [1]. The difference proves negligible, 
though, for ξ here and the values of n in our table. We shall in a 
moment list the estimates of T1(n) thus obtained using the low-
er bound for ξ in (7): but to estimate the numbers W(n) of du-
plicands we must count templates Yk +1 which match more 
than one of their predecessors. For 1  q < n let Tq (n) be this 
count: assuming independent occurrence again we may esti-
mate it as

Tq (n)  n–1
k–1 Φq (k) …(9)

The sum here is the expected value of (n − 1) independent 
Bernoulli trials, once more, where the k-th trial is a success if 
Yk + 1 matches q or more of its predecessors, and the chance of 
success on the k-th trial is Φq (k) now. For our purposes it suf-
fi ces to get an upper bound on Tq (n) when q  2 : for which we 
shall use the upper bounds in (6) and (7) on Φq (k) and on ξ 
respectively. The totals Tq (n) prove negligibly small for q  5 
here; and a routine calculation shows that with ξ and n as they 
are here we have

Tq (n)  q ξq nq +1 /(q + 1)! …(10)

for 2  q  4. The calculation is in the same place where the 
 relations (2) and (5) and (6) are derived. Estimating in the 
manner specifi ed we get the numbers in Table 2:

The estimates of T1(n) are lower bounds: while for 2  q  6 
the estimates of Tq(n) are upper bounds, having been obtained 
with the relation (10). The templates counted in Tq + 1(n) have 
already been counted in Tq(n) of course, for a template that 
matches (q +1) others certainly matches at least q others. Now 
a template that is counted in Tq (n) will match at least q among 
the templates preceding it. But subtracting Tq + 1(n) from Tq(n) 
counts the templates that match exactly q predecessors: and 
hence involve exactly (q+1) templates. Let Rq(n) be the set of 
templates which each match exactly q predecessors. To pro-
ceed we need an upper bound U(n) on the number of templates 
that match some other. That cannot exceed twice the number 
of total matches now, assuming even that each and every 
match involves its own pair of templates: so from (3) we may 
set U(n) = ξn(n − 1).

Let Y be a template in R1(n) and Z the unique predecessor it 
matches. Now [U(n) − 1]ξ is the chance that Z will match some 

other template besides Y : so 1 − [U(n) − 1]ξ is the probability 
that Z will match none other besides Y. We must also consider 
that Y might match some successor. It is reasonable to assume 
that the U(n) possibly matching templates will be uniformly 
distributed among the templates in the given listing; and rea-
sonable to assume, as well, that the templates in R1(n) will be 
uniformly distributed among these U(n) templates. So [U(n) − 
1] / 2 may be taken as the expected number of succesors that Y 
will have: whence (1 − [U(n) − 1]ξ / 2) is the probability that Y 
will match none of these successors. The probability that any Y 
in R1(n) and its predecessor Z will form their own distinct 
matching pair comes to

µ1(n) ≡ (1 − [U(n) − 1]ξ) · (1 − [U(n) − 1]ξ / 2)

then: and we must count twice the difference T1 (n) − T2 (n) 
multiplied by this uniform probability µ1(n) in the number of 
duplicands W(n) now, for a given Y in R1(n) or its matching 
predecessor Z might happen to match some other template, and 
multiplying by µ1(n) corrects for the possibility of counting 
 either Y or Z more than once in W(n).

The same considerations apply to templates in a general 
Rq(n) as well. Given a Y there let [Y] be the set consisting of Y 
and its q matching predecessors: we must assess the probabili-
ty that the elements of [Y] form their own distinct set of q + 1 
templates, each matching some other among themselves, only, 
and none matching any other besides. That probability will 
come to

µq(n) ≡ (1 − [U(n) − q]ξ) · (1 − [U(n) − q]ξ / 2) …(11)

Now, the fi rst factor in (11) computes the chance that a match-
ing predecessor to Y matches none but Y and another of its q 
matching predecessors, if it matches any other template at all, 
and the second factor computes the chance that Y itself matches 
none besides these q predecessors. One readily sees that µq(n) 
is always small enough to serve as a probability here: for any ξ 
< 10−11 and any n  (1.5)109 we have

[U(n) − q]ξ < U(n)ξ < ξ2 n2 < 3 · 10−4 < 10−3.

To our count of W(n) we must add (q+1)[Tq (n)−Tq + 1(n)] µq(n) 
for each applicable q then—multiplication by µq(n) correcting 
for the possibility, again, of counting more than once an ele-
ment of [Y] that might match a template that is not in [Y] — 
and as Tq (n) = 0 for q  5 here we may set

W (n)  4
q–1 (q + 1) [Tq (n) − Tq + 1 (n)] µq(n) …(12)

as our approximation, fi nally, of the count of duplicands. The 
numbers recorded in our fi rst table were obtained by applying 
(12) to the estimates in the rows of our second table. The esti-
mates of duplicands obtained thus may be taken as lower 
bounds for the actual numbers: because we have used the low-
er bound on ξ in (7) to estimate T1 (n) always, while to estimate 
Tq (n) for 2  q  4, from the relation (10), we have used the up-
per bound on ξ in (7) and, as well, the upper bound on Φq (k) 
got from that using (6).

We noted that our estimate of T1 (n) was tight, the bounds on 
the probabilities Φ1(k) in (5) being very close. The same cannot 

Table 2
n T1(n) T2(n) T3(n) T4(n) T5(n) T6(n)

109 3436011 15751 41 0 0 0

(1.1)109 4157573 20964 59 0 0 0

(1.2) 109 4947856 27217 84 0 0 0

(1.3) 109 5806859 34604 116 0 0 0

(1.4) 109 6734582 43220 156 0 0 0

(1.5) 109 7731026 53158 206 1 0 0
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be said for the bounds on Φq (k) in (6) for q  2 though; and a 
referee had asked if our estimates were vulnerable for that 
 reason. The prudent course would be to secure the principal 
contention of the paper by exhibiting lower bounds for W(n) 
which are not contestable; and we shall do so by using the fi rst 
and dominating term of the sum in (12) only, now, for we have

W(n)  2[T1 (n) − T2 (n)] µ1(n) …(13)

Certainly. Let us write W1(n) for the term on the right here: 
which undercounts the duplicands, note, because the counts T2
(n) are not negligible while the counts T3 (n) are, and we are 
ignoring the contribution 3[T2 (n) − T3 (n)] µ2(n) here. We shall 
use the lower bound for ξ in (7) for T1 (n) and the upper for T2 (n) 
again, as before, to estimate W1 (n) also: and we get Table 3.

The estimates of T1(n) and T2(n) in Table 3 are the same as in 
Table 2, of course, and the estimates of W(n) are the same as in 
Table 1. Each entry under W1(n) is appreciably smaller, as we 
expect, than the corresponding one under W(n). The ratios 
 under W(n)/n are the estimated proportions of  duplicands 
from the fi rst table: but the corresponding ratios under 

W1(n)/n are very marginally smaller only, so we need not 
weaken our contention that the proportions of duplicands are 
too high.

Conclusions

We have considered the biometric identifi cation programme of 
the UIDAI, and for varying levels of population estimated the 
proportion of duplicands: persons whose biometric identifi ers 
match that of some other person. These proportions are too 
high: and indicate that the programme would badly fail to 
uniquely identify individuals. The estimation depends on the 
results of one experiment conducted by the UIDAI itself, and 
requires the elementary knowledge of the differential calcu-
lus, only, that any student of science or engineering would 
possess, and some acquaintance besides with one special func-
tion particularly relevant to assessing the accuracy of bio-
metric identifi ers. The experiment was performed in the very 
early stages of the programme, and the UIDAI should have 
been able even then to estimate the proportions of duplicands 
as we have here. 
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‘Pay-per-use’ facility also available for downloading data from different modules as per specific requirements.

EPW Research Foundation
C-212, Akurli Industrial Estate, Akurli Road, Kandivli (E), Mumbai - 400101  |  Tel: 022-2885 4995/96 | Email: its@epwrf.in  |  Web: www.epwrf.in

Salient Features 
Time Series 
Data

Comprising major sectors with 
various periodicities
Availability of data in time 
series format
Timely updation of data

User-
friendly 
Interactive  
System

Ease in identifying variables 
Versatility of data variables/
series selection
Easy to download and export to 
Excel files

Enhancing 
Research 

Saves time spent on data 
compilation
Plotting of data variables/series 
Availability of ‘Meta data’ at a 
click

EPWRF India Time Series
An online database on Indian economy developed by EPW Research Foundation, Mumbai.

To subscribe, visit : www.epwrfits.in
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1 Let ξ be any positive real number lying between 0 and 1. Set Φ(n) ≡ 1− (1− ξ)n for any
positive integer n. Our object is to derive the following inequalities:

Φ(n)/n ≤ ξ ≤ − log[1− Φ(n)]/n(1)

nξ(1− ξ)/(1− ξ + nξ) ≤ Φ(n) ≤ nξ(2)

(1− ξ)n−qξq
(
n

q

)
≤ 1 −

∑ q−1

r=0

(
n

r

)
ξr(1− ξ)n−r ≤ qξq

(
n

q

)
(3)

The correspondences to the numbering of the paper are (1) ↔ (2), (2) ↔ (5) and (3) ↔ (6).

The central term in (3) would have been denoted Φq(n) in the paper: we shall do likewise: and
Φ(n) = Φ1(n) of course. The binomial coefficients

(
m

s

)
had been written as Cm

s in the paper.1

Set g(t) = 1− (1− t)n so that g′(t) = n(1− t)n−1 : it is elementary then that for 0 < ξ < 1

we have

1− (1− ξ)n =

[
n

∫ ξ

0

(1− t)n−1 dt

]
≤ n

∫ ξ

0

dt = nξ

since 0 < (1 − t) ≤ 1 when 0 ≤ t ≤ ξ < 1 . This inequality provides the lower bound in
(1) and the upper bound in (2) already. To obtain the upper bound in (1) note first that
1−Φ(n) = (1− ξ)n by definition, which gives log[1−Φ(n)] = n · log(1− ξ) ; so we must relate

ξ and log(1− ξ) to proceed. For 0 < x < 1 generally we have

log(1− x) = −

∫
dx

1− x
= −

∫
(1 + x+ x2 + ... ) dx = −

(
x+

x2

2
+

x3

3
+ ...

)

since the series
∑
∞

r=0
xr converges absolutely. It is immediate that log(1− x) < −x then: and

hence x < − log(1− x) . So we have

ξ ≤ − log(1− ξ) =
− log[1− Φ(n)]

n

yielding the upper bound for (1). We get a lower bound on log(1− x) from its expression as the
series above: simply note that

(x+ x2/2 + x3/3 + ... ) < (x+ x2 + x3 + .. ) = x(1 + x+ x2 ... ) = x/(1− x)

which gives us −x/(1 − x) < log(1 − x) : and the bounds x < − log(1 − x) < x/(1 − x) will
help obtain the lower bound in (2). For 0 < x < 1 and positive integers n we now have

−n log(1− x) < nx/(1− x) ; 1− n log(1− x) < (1− x+ nx)/(1− x)

nx < −n log(1− x)

from these bounds on − log(1− x) ; and these together yield

(1.1) nx ·

[
1− x

1− x+ nx

]
<

−n log(1− x)

1− n log(1− x)

Let y > 0 next; to proceed we must take a detour and note that from 1 + y < ey we get

e−y + ye−y < eye−y = 1

0 < 1 − e−y − y · e−y

y < 1 + y − e−y − y · e−y = (1 + y) · (1− e−y)
y

1 + y
< 1− e−y(1.2)

1 In the paper’s equivalents of (1), (2) and (3) the letter ‘k ’ appears where the the letter ‘n’
appears here: an innocuous change which should cause no confusion.

This is a technical supplement to the paper “Flaws in the UIDAI Process”. The notation of the paper has been 
retained for the convenience of readers: but the arguments here are self-contained, and this supplement may 
be read independently.
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For 0 < x < 1 set t = − log(1 − x) ; we have x = 1 − e−t and e−t = 1 − x then, whence

e−nt = (1− x)n and nt = −n log(1− x) ; then for positive integers n we get

nx ·

[
1− x

1− x+ nx

]
<

−n log(1− x)

1− n log(1− x)
=

nt

1 + nt
< 1− e−nt = 1 − (1− x)n

from (1.1) and (1.2) just above, as we need for the lower bound in (2). For the upper bound we

have in (3) we must consider the Incomplete Beta Function. Set

Bx(a, b) ≡

∫ x

0

ta−1(1− t)b−1dt

for arguments a, b and any 0 < x ≤ 1 first; then Ix(a, b) ≡ Bx(a, b)/B1(a, b) defines the

Incomplete Beta Function for these arguments. It is usual to write B1(a, b) as B(a, b) simply.
Elementary integration, by parts, will give us

(1.3)

∫ x

0

tj(1− t)n−j−1dt =
−tj(1− t)n−j

n− j

∣∣∣∣
x

0

+

[
j

n− j

]
·

∫ x

0

tj−1(1− t)n−jdt

Setting x = 1 here yields the relation

(1.4) B(j + 1, n− j) = [j/(n− j)] · B(j, n− j + 1) ;

we have B(1, n) =

∫
1

0

(1− t)n−1dt =
−(1− t)n

n

∣∣∣∣1
0

=
1

n
to begin with; so iterating (1.4) gives

(1.5) B(j + 1, n− j) =
j · (j − 1) · ... · 2 · 1 · 1

(n− j) · (n− (j − 1)) · ... · (n− 2) · (n− 1) · n
=

[
(n− j) ·

(n
j

)]−1

Write B(a, b) as Bb
a to save space. We have Bn−j

j+1
· Ix(j+1, n− j) on the left of equation (1.3)

now, and Bn−j+1

j · Ix(j, n − j + 1) for the integral on its right. By evaluating the first term on

the right we obtain

B
n−j
j+1

· Ix(j + 1, n− j) =
−xj(1− x)n−j

n− j
+

[
j · Bn−j+1

j

n− j

]
· Ix(j, n− j + 1)

= B
n−j
j+1

·

[
−

(n
j

)
xj(1− x)n−j + Ix(j, n− j + 1)

]

because we have 1/(n− j) =
(
n

j

)
· B

n−j
j+1

and [j/(n− j)] · Bn−j+1

j = B
n−j
j+1

from (1.4) and (1.5)

respectively. So

(1.6) Ix(j + 1, n− j) = Ix(j, n− j + 1) −
(n
j

)
xj(1− x)n−j

now; it is immediate from the computation of B(1, n) that Ix(1, n) = 1 − [1 − x]n ; and then

(1.6) will provide the inductive step for the equality

Ix(q, n− q + 1) = 1 −

q−1∑
j =0

(n
j

)
ξj · (1− ξ)n−j

To obtain the upper bound in (3) we need only note now that

Bn−q+1
q · Ix(q, n− q + 1) =

∫ x

0

tq−1(1− t)n−q dt ≤ xq−1

∫ x

0

(1− t)n−q dt
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generally; then, since (1− t) ≤ 1 when 0 ≤ t ≤ ξ < 1 , as we have here, we finally get

Bn−q+1
q · Iξ(q, n− q + 1) ≤ ξq−1

∫ ξ

0

dt ≤ ξq

Iξ(q, n− q + 1) ≤ ξq/Bn−q+1
q

=
ξq · [n− (q − 1)] · [n− (q − 2)] · · · [n− 1] · n

(q − 1) · (q − 2) · · · · 2 · 1
cf. (1.5)

=
ξq

(q − 1)!

q−1∏
r=0

(n− r)

= qξq
(n

q

)

We do not need lower bounds on Iξ(q, n−q+1) when q > 1 : but we give them for completeness.
As 1− t ≥ 1− ξ for t < ξ we have

Bn−q+1
q · Iξ(q, n− q + 1) ≥ (1− ξ)n−q

∫ ξ

0

tq−1dt = (1− ξ)n−q · ξq/q

Iξ(q, n− q + 1) ≥
(1− ξ)n−q · ξq

q · Bn−q+1
q

=

[
(1− ξ)n−q

q

]
·

⎡
⎣ ξq

(q − 1)!

q−1∏
r=0

(n− r)

⎤
⎦

≥ (1− ξ)n−qξq
(n

q

)

This completes the derivation of the relation (3). The upper bound in (3) agrees with the upper
bound in the relation (2) when q = 1 : the latter bounds are a special case of the former. But
the lower bound in (2) will exceed the lower in (3) unless

(1− ξ)n−1 ≥ 1− n · ξ + ξ ≥ (1− ξ)/(1− ξ + n · ξ)

[1 − (n · ξ − ξ)] · [1 + n · ξ − ξ] = 1− (n− 1)2ξ2 ≥ 1− ξ

(n− 1)2ξ2 ≤ ξ

(n− 1)2ξ ≤ 1

This does not hold for the range of n in the paper and for the particular value of ξ there: but
we have used the upper bound in (2) as a safe approximation of Φ1(n).

2 We turn now to bounding the totals Tq(N) in the paper: which was done for 6 values of N
equally spaced between 1 billion to 1.5 billion. With Φq(n) as above for 1 ≤ q ≤ n , and with

N as the upper limit to the index n , we had Tq(N) =
∑N−1

n=1
Φq(n) there: and our object is

to show that

Tq(N) ≈
ξqNq+1

(q + 1) · (q − 1)!

for 2 ≤ q ≤ 4, and the specified values of N, and the particular value ξ = (0.6874008011)10−11

in the paper. It will prove very convenient to set λ = 0.6874008011 so that ξ = λ · 10−11 now.

We may bound Φq(n) ≡ 1 −
∑ q−1

r=0

(
n

r

)
· ξr · (1 − ξ)n−r with qξq

(
n

q

)
using (3) above: upon

which we have

T2(N) ≤

N−1∑
n=1

2ξ2
(n
2

)
= ξ2

[
N−1∑
n=1

n(n− 1)

]
= ξ2

[
N−1∑
n=1

n2 −

N−1∑
n=1

n

]

≈
ξ2 ·N · (N − 1) · (2N − 1)

6

≈
ξ2 · 2 ·N3

6
=

ξ2 ·N3

3
=

ξ2 ·N2+1

(2 + 1) · (2− 1)!

In going from line 1 to line 2 above we discard λ210−22
∑

n n < N2/1022 which is less than

10−3 for N ≤ (1.5)109 : and in going from line 2 to line 3 we again discard 3 summands where
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N has power at most 2. We may do so because T2(N) is an integer. Continuing, we have

T3(N) ≤

N−1∑
n=1

3ξ3
(n
3

)
=

ξ3

2

[
N−1∑
n=1

n(n− 1)(n− 2)

]

=
ξ3

2

[
N−1∑
n=1

n3 − 3

N−1∑
n=1

n2 + 2

N−1∑
n=1

n

]

≈
λ3

2 · 1033

[
N−1∑
n=1

n3

]
=

λ3

2 · 1033

[
N−1∑
n=1

n

]2

=
λ3

2 · 1033

[
N4 − 2N3 + N2

4

]

≈
λ3 ·N4

4 · 2 · 1033
=

ξ3 ·N3+1

(3 + 1) · (3− 1)!

In going from line 2 to line 3 we discard summands where the power of N is 3 or less, for these
will not exceed 10−5 in absolute value: and we discard terms for the same reasons in going from

line 3 to line 4. Going on in this manner we obtain

T4(N) ≤

N−1∑
n=1

4ξ4
(n
4

)
=

λ4

1044 · 3!

[
N−1∑
n=1

n(n− 1)(n− 2)(n− 3)

]

≈
λ4

1044 · 3!

[
N−1∑
n=1

n4

]

≈
λ4

1044 · 3!

[
N5

5
− 10

(
N−1∑
n=1

(n3 + n2)

)
− 5

(
N−1∑
n=1

n

)
− N

]

≈
λ4N5

5 · 3! · 1044
=

ξ4N4+1

(4 + 1) · (4− 1)!

and the rationale for discarding terms above should be clear now from what has already been said.

Proceeding in this fashion will yield

T5(N) ≈
λ5N6

6 · 4! · 1055
<

1

3 · 4! · 10

for N ≤ (1.5)109 and λ < 0.69 : a quantity we may round to 0 since, to note it again, Tq(N)
is always an integer: and we need go no further now, since Tr(N) only decreases as r increases.

Hans Varghese Mathews, Centre for Internet and Society


